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Abstract. When designing model-based fault-diagnosis systems, in a structural model. In addition to finding all submodels that can
the use of consistency relations (also called e.g. parity relations) is be used to derive consistency relations, the algorithm also selects a
a common choice. Different subsets are sensitive to different subsets small set of submodels that corresponds to consistency relations with
of faults, and thereby isolation can be achieved. This paper presents the highest possible diagnosis capability.
an algorithm for finding a small set of submodels that can be used to In industry, design of diagnosis systems can be very time con-
derive consistency relations with highest possible diagnosis capabil- suming if done manually. Therefore it is important that methods for
ity. The algorithm handles differential-algebraic models and is based diagnosis-system design are as systematic and automatic as possible.
on graph theoretical reasoning about the structure of the model. An The algorithm presented here is fully automatic and only needs as
important step, towards finding these submodels and therefore also input a structural model of the system. This structural model can in
towards finding consistency relations, is to find all minimal struc- turn easily be derived from for example simulation models.
turally singular (MSS) sets of equations. These sets characterize the Structural approaches have also been studied in other works deal-
fault diagnosability. The algorithm is applied to a large nonlinear in- ing with fault diagnosis. In [10] a structural approach is investi-
dustrial example, a part of a paper plant. In spite of the complexity of gated as an alternative to dependency-recording engines in consis-
this process, a small set of consistency relations with high diagnosis tency based diagnosis. Furthermore a structural approach is used in
capability is successfully derived, the study of supervision ability in [2] and an extension to this work

considering sensor placement is found in [ 12].
In Sections 2 and 3, structural models and their usefulness in fault

1 Introduction diagnosis are discussed. Then in Section 4, a complete description of

When designing model-based fault-diagnosis systems, using the the algorithm is given. The algorithm is then in Section 5 applied to

principle of consistency based diagnosis [5, 11, 6], a crucial step is a large nonlinear industrial process, a part of a paper plant. In spite

the conflict recognition. As shown in [3], conflict recognition can be of the complexity of this process, a small set of consistency relations

achieved by using pre-computed consistency relations (also called with high diagnosis capability is successfully derived.

e.g. analytical redundancy relations or parity relations). With prop-
erly chosen consistency relations, different subsets of consistency re- 2 Structural models
lations are sensitive to different subsets of faults. In this way isolation The behavior of a system is described with a model. Usually the
between different faults can be achieved, model is a set of equations. A structural model [2] contains only the

The systems considered in this paper are assumed to be modeled information of which variables that are contained in each equation.
by a set of nonlinear and linear differential-algebraic equations. To Let Alj,• denote the structural model obtained from the equations,
find consistency relations by directly manipulating these equations is describing the system to be diagnosed. This structural model will
a computationally complex task, especially for large and nonlinear cntin the dfrt ko variable s knowntvral Ydelg.
systems. To reduce the computational complexity of deriving consis- sensor different kinds of vable le Xno , var ex g.

sensor signals and actuators; unknown variables X., for example
tency relations, this paper proposes a two-step approach. In the first internal states of the system; and finally the faults F. If faults are
step, the system is analyzed structurally to find overdetermined sub- decoupled then they will also be included in X.•. The differentiated
models. Each of these submodels are then in the second step trans- and non-differentiated version of the same variable are considered to
formed to consistency relations. The benefit with this two-step ap- be different variables. The time shifted variables in the time discrete
proach is that the submodels obtained are typically much smaller be dre ariaese time shifte variablesithan the w h o e m o el, and ther for th co m uta io n l co ple ity case are also con sid ered to b e sep arate v ariab les.
than the whole model, and therefore the computational complexity A structural model can be represented by an incidence matrix [4,
of deriving consistency relations from each submodel is substantially 1]. The rows correspond to equations and the columns to variables. A
lower compared to directly manipulating the whole model. cross in position (i, j) tells that variable j is included in equation i.

The main contribution and the focus of the paper is a structural al-
gorithm for finding these submodels. Instead of directly manipulating Example 1 A simple example is a pump, pumping water into the top
the equations themselves, the proposed algorithm only deals with the of a tank. The water flows out of the tank through a pipe connected
structural information contained in the model, i.e. which variables to the bottom of the tank. The known variables are the pump input u,
that appear in each equation. This structural information is collected the measured water level in the tank yh, and the measuredflow from



the tank yr. One fault denoted fj is assumed to be associated with 3.1 Basic Assumptions
each known variable. The actual flows to andfrom the tank are de-
noted Fl, and the actual water level in the tank is denoted h. Without Basic assumptions are needed to guarantee that the subsets found

knowing the exact physical equations describing the analytic model only by analyzing structural properties are exactly those subsets that

the structural model can be set up asfillows: can be used to form consistency relations. Before the basic assump-
tions are presented, some notation is needed. Let E be any set of

equation unknown fault known equations and X any set of variables. Then define varx (E) - {x c

_ _ F 2F2 ht, ff, - h fyff i Uyhyf XI e E E : e contains x4 and eqUE(X) {e E EIIx E X : e
el X X X contains x4. Also, let varx (e) and equE(x) be shorthand notations
e2 XX X for varx({6}) and equE({x}) respectively. If g is any equation,
e3 X X X function or variable, let g () denote the i:th time derivative of g. Then
e4 XX define va-rx(E) - {undifferentiated xj3i(x(`) E varx(E))}, e.g.
e X X X varxLuy({y 4') = {y, x. Finally, the number of elements in

any set E is denoted IE1.

Equation 6l describes the pump, 62 the conservation of volume in The first assumption is introduced to ensure that the model be-

the tank, e63 the water level measurement, e4 the flow from the tank comes finitely differentiated in Section 4.1.

caused by the gravity, e,5 the flow measurement, and e6 a jault model Assumption 1 The model AL,ýj, has the property
for the flow measurement jaut fyj.

VB _ MoC g: JEJ < 7va-x~y(E)j. (3)

3 Fault Diagnosis Using Structural Models The meaning of condition (3) is that each subset of equations include

more or equally many different variables, considering derivatives as
The task is to find submodets that can be used to form consistency the same variable. If condition (1) is not fulfilled and there are no
relations. To be able to draw a correct conclusion about the diagnos- redundant equations, the model would normally be inconsistent.
ability from the structural analysis, it is crucial that for each of thesesubmdel thre s aconsstecy elaiontha valdats al euatons As mentioned earlier, the structural model contains less informa-
submodets there is a consistency relation that validates all equations tion than the analytical model. The next assumption makes it possible
included in the submodet. The common definition of consistency re- to draw conclusions about analytical properties from the structural

lation does not ensure this. Therefore the new definition of consis- properties.

tency relation fjr an equation set is introduced that explicitly points properties.

out the submodel considered. Before consistency relation for E is Assumption 2 There exists a consistency relation c(y) = Ofir the
defined some notation is needed.

Let x and y denote the vectors of variables contained in X, and
Y respectively. Then E(x, y) denote an equation set that depends on VX' C varx, (H), X' -A 0 : IX'2 < Ieq'uH (X')1 (4)
variables contained in X, and Y.

According to Assumption 2 the unknown variables in H can be
Definition 1 (Consistency Relation for e) A scalar equation eliminated if and only if it holds that for each subset of variables in
c(y) - 0 is a consistency relation for the equations B(x, y) ift H the number of variables is less then the number of equations in H

]xB(x, y) 4> c(y) 0 (2) which contain some of the variables in the chosen subset.
The Assumptions 1 and 2 are often fulfilled. For example all sub-

and there is no proper subset of B that has property (2). sets of equations found in the industrial example in the end of the
paper satisfy Assumption 2. Even though the "only if' direction of

Definition 1 differ from the common definition of consistency re- Assumption 2 is difficult to validate in an application, the results of

lation in two ways, the left implication in (2) and that there is no the paper can still be used to produce a lower bound of the actual

proper subset of E that has property (2). Refer the latter as the min- detection and isolation capability.

imality condition in Definition 1. The following example shows the If all subsets of the model fulfill Assumption 2, the structural anal-

importance of the left implication in (2). ysis will find all subsets that can be used to find consistency relations.

Example 2 Consider the model B = {yl = X, Y2 = X, Y3 - X 1 3.2 Finding Consistency Relations via MSS Sets
The equation y1 - y2 = 0 is not a consistency relationjbr E, because
it is true even if e.g. y3 -A y1 = Y2 and then it is impossible to find Now, the task of finding those submodels that can be used to derive
a consistent x in E. However yi - y2 = 0 is a consistency relation consistency relations will be transformed to the task of finding the
for {yf -- X, Y2 = X4. subsets of equations that have the structural property (4). To do this,

The expression yj + y2 - 2Y3 = 0 includes y3. The right im- two important structural properties are defined [9].
plication in (2) holds, but the opposite direction does not hold. The
conclusion is that also this expression is not a consistency relation Definition 2 (Structurally Singular) A finite set of equations B is
for B or any equation subset ofF. structurally singular with respect to the set of variables X ifIEI >

However (yi - y2)
2 

+ (y2 - y3 )2 = 0 is a consistency relation varx(E)L.
Jbr E.

Definition 3 (Minimal Structurally Singular) A structurally sin-
The minimality condition in Definition 1 is important, because it gular set is a minimal structurally singular (MSS) set if none of its
guarantees that any invalid equation can infer an inconsistency, proper subsets are structurally singular.



For simplicity, MSS will always mean MSS with respect to X, in For all natural numbers j, yJ+) _ (j) - 0 is a consistency
the rest of the text. The next theorem tells that it is sufficient and nec- relation. Most of these consistency relations contain high orders of
essary to find all MSS sets to get all different sets that can be utilized derivatives of y, and y2. The derivatives of known variables are in
to form consistency relations. The task of finding all submodels that general not known, but they can usually be estimated. The higher
can be used to derive consistency relations has thereby been trans- order of derivative, the more difficult it is to estimate the derivative.
formed to the task of finding all MSS sets. Thus it is reasonable to make a limitation mn(y)jfr variable y of the

Theorem 1 Let H C Al,_ig, where ALig fufills Assumption 1. order of derivative that can be considered as possible to estimate.
Derivatives up to m (y) are then considered to be known and higherFurther let H and all tE idflfll Assumption 2. Then there exists a d rvtvsbl n oX

consistency relation c(y) - OJor H(x, y) where [HI < oo iff H -- eiaivsblngt ~cJo tss where laon each i, tE is an MSS set. To summarize the example, Algorithm 2 must be capable of differ-
entiating equations. To produce a correct structural representation of

For a proof, see [7]. differentiated equations, the algorithm must take linearly contained
variables into account. Further, it has to handle the limitation m (y)

4 Algorithm for finding and selecting MSS sets for each y E Y.

The objective is to find all MSS sets in a differentiated version of the Algorithm 2 consists of two parts. The first part is a modification of

model ALM, and then choose a small subset of these MSS sets with Pantelides' algorithm [9]. Let Al •i= 1 U",Joeij) }, then ai is the

the same diagnosability as the full set of MSS sets. The algorithm highest number of differentiations in 3l of equation i. Then 3l is a

can be summarized in the following steps. differentiated model of Aloi, = U' 1{ei}. Let {e(-') < i < n}
be the set of most differentiated equations in Al. The highest deriva-

Algorithm 1 tive of a non-differentiated variable x in the model 3l is defined as
max({ilx(') E varx(M)}).

1. Difjerentiating the model: Find equations that are meaningful to Pantelides' algorithm differentiates equation subsets, so that the
differentiateJbrfinding MSS sets. original equations together with the differentiated equations have a

2. Simplifjing the model: Given the original model and the addi- complete matching [4] of the most differentiated equations into the
tional equations fiund in step (1), remove all equations that can- unknown variables with the highest derivatives.
not be included in any MSS set. To simplifyj the next step, merge The modification of Pantelides' algorithm is that derivatives of
sets of equations that have to be used together in each MSS set. known variables, higher or equal to m (y), are also allowed to be

3. Finding MSS sets: Search fo r MSS sets in the simplifed model, included in the matching.
4. Analyzing Diagnosability: Examine the diagnosability of the MSS

sets fiund in step (3). Algorithm 2
5. DecouplingJaults: If the diagnosability has to be improved, some Input: The original model Alo.,, a description of which variables

Jaults have to be decoupled. For decoupling Jaults, return to that are linearly contained, andjfr each y E T-Ty (AoIig), m (y) <
step (1) and consider these faults as unknown variables in X_.

6. Selecting a subset of MSS sets: Select the simplest set of MSS sets
that contains the desired diagnosability. (1) Apply the modified Pantelides' algorithm to AlM,.ig and the limits

m (y). The output is the number of times each equation must be
Note that to avoid searching for all MSS sets decoupling all possi- difJerentiated tofind all MSS sets.
ble faults, Algorithm 1 has been organized so that first, the fault free (2) Differentiate the equations in Al_-ig the number of times sug-
model is analyzed. Then if it is necessary for achieving higher isola- gested in step (1) and use the description of which variables that
bility, faults are decoupled. The following sections discuss each of are linearly contained, to get the correct structural description of
the steps in Algorithm 1. the differentiated structural model denoted Adi ff.

Output:" M•di f f

4.1 Differentiating the Model

It is critical that step (1) in Algorithm 2 terminates, i.e. no equationTo handle dynamic models, Algorithm 1 needs a way to deal with shudbdifrnatdnifnteum rofie.InPteds

derivatives. In this section an algorithm for handling derivatives isIn Panteides
defivatied.n This sectionan algorithm isfreferorithmdi 2.dAsmalervats i (1988) the condition when the algorithm terminates is stated. This
defined. This algorithm is referred to as Algorithm 2. A small exam- condition can be written as the structural property (3). Since the
pie will show what Algorithm 2 must be capable of handling. model Al.,.ig has this property according to Assumption 1, the al-

Example 3 Consider the model E = {61, C2,68} 3 {y - X, Y2 gorithm will terminate.
Y Y3 = x 2 } It is obviously impossible to eliminate X in e2 if dif Let now MASS( M) denote the set of MSS sets found in equations

ferentiation of any equation isfJorbidden. In general, all derivatives M and MASSu 1 (M) = MSS(u~oM(•)). Then it is possible to
of E have to be considered. If E(') denote the set of the i:th time state the following theorem proven in [7].

derivative of each element, the equation set generally considered is Theorem 2 If Assumption I is satisfied and for each y E

Even though varx, (el) = varx, (e3) = {x} the derivatives of Tary(MAIgi), mr(y) < -, then

et andCe contain different sets of variables, because var xj(i) = M SS 1 (AM ) = AISS(MAliff)

{} -A varx (6:) -- {x, 4'}. Since x is linearly contained in ei,
the variable x in , disappears. Knowledge about which of the vari- The consequence of this theorem is that all MSS sets that are possible
ables that are contained linearly in an equation determines the set of to find if the original model ALMi, is differentiated an infinite number
variables in the differentiated equation completely. of times, can always be found in AlM&H.



Example 4 The /ollowing example is a continuation of Example I This makes one group of {eI, e2, 64, 65}. This search made simplifi-
with the structural model shown in (1). Let m ('u) = m(yf) = 1 cations and therefore the search is performed once more. The second
and m (yh) 0. According to Algorithm I thefirst iteration uses time no simplifications have been done and the simplification step is
theJulttfree model, i.e. allfaults are zero. The equation e6 contains therefore complete. The remaining system is
only a fault. Since all faults are at the moment assumed to be zero,
then e6 is not considered. Further assume that no variable is linearly Fa2 h f'ukh r fa u yl k fy wf
contained in any equation. Then no variable will disappear in thedi {dife2,44,45} f XiX fX X X XX

ferentiation. The structural model AldMf f obtainedjrom Algorithm 2 e', 5 X XX (6)
C3 64 X X

issC X X

equation 'unknown f ault knowu C

FT1 F2 F2 h, h, f. fyh fyf if "UYhyf"f

elhX X X 4.3 Finding MSS Sets

e2 X X X After the simplification step is completed, step (3) in Algorithm 1
C3 X X X (5) finds all MSS sets in the simplified model Al,, .. This section ex-
64 X X
64 X X plains how the MSS sets are found.

C5 X X X The task is to find all MSS sets in the model AMi... with equations

ý5 XX XX XX {et ... ,e,}. Let Alk {ek,... , e} bethelast n - k + 1equa-
tions. Let E be the current set of equations that is examined. The set
of MSS sets found is denoted Ala q3. Then the following algorithm

4.2 Simplifying the Model finds all MSS sets in 1!sir,.

It is a complex task to find all MSS sets in a structural model. There- Algorithm 3

fore it can be of great help if it is possible to simplify the model. Here Input: The model ,

two kinds of simplifications are used. 1. Set k = 1 and Ala3 = 0.
In a first step, all equations in Aldiff that include any variable 2. Choose equation Ck. Let E {ek } and X ; 0.

that is impossible to eliminate, are removed. This can be done with 3. Find all MSS sets that are subsets ofAlk and include equation ek.
Canonical Decomposition [2]. (a) Let X = varx, (E)\X be the unmatched variables.

In a second step, variables that can be eliminated without losing
any structural information are found. The rest of this section will be (b) IfX ; 0, then E is an MSS set. Insert E into AlMu9 3.

devoted to a discussion about this second step. (c) Else take a remaining variable " E X and let X = X U
If there is a set X C X, with the property 1 + IX[ {1}. Let B = eq'uMk\E(,") be the remaining equations. For

CequKfd•f (X)1, then all equations in equy,Miff (X) have to be used all equations e in B let E = E U {e} and goto (a).
to eliminate all variables in X. Since all unknown variables must be 4. lfk < n set k = k + I and goto number (2).
eliminated in an MSS set this means particularly that all MSS sets
including any equation of equAldij f (X) has to include all equations Output: The set of MSS setsfound, i.e. Alag.
in equMr:i,.f (X). The idea is to find these sets. Then it is possible to Algorithm 3 finds all MSS sets in Aol.rg according to the next theo-
eliminate internal variables, here denoted X, in these sets. Every set rem proven in [7].
is replaced with one new equation. Theorem 4 AL,3 = AISS(AIsi-u p)

This second simplification step finds subsets of variables that are
included in exactly one more equation than the number of variables. The following small example with five equations shows how the al-
To reduce the computational complexity, a complete search for such gorithm works.

sets is in fact not performed here. Instead only a search for single 1 X X2 X3

variables included in two equations is done. When a variable is in- 2 X X
2 X X

cluded in just two equations, these equations are used to eliminate 3 X X X
the variable. If all variables are examined and some simplification 4 X
was possible, then all remaining variables have to be examined once 5 X
more. When no more simplifications can be made, the simplification This model gives the following time evolution of current equations,
step is finished and the resulting structural model is denoted As ip. i.e. E in Algorithm 3 is
Note that with this strategy larger sets than two equations will also
be found, since the algorithm can merge sets found in previous steps. 2 3 2

The next theorem ensures that no MSS set is lost in the simplifica- 2 5 5 2 2 3 3 5
tion step. 3 3 3 3 4 4 4 4 4 4

Theorem 3 AISS(Aljzff) = AISS(Afi-p) 4

4 3 3 5
For a proof, see [7]. Consider again Example 4 and the output (5) 3 3 5 5 5 4 4
from the differentiation step. No equations can be removed in the 2 2 2 2 2 2 3 3 3 4 5

first simplification step. The bold columns represent the MSS sets found. This example
The second step searches for variables which belong only to two also shows that if there are several matchings including the same

equations. In the first search, the algorithm finds F1 in {le, e2}, F2 in equations, the algorithm finds the same subset of equations several
{ 64,5 }, and h in the equations produced by {I Cl 2 } and {14, 65}. times.



4.4 Analyzing Diagnosability variables X, and search for new MSS sets by applying Algorithm 1
step (1) to the new model obtained. An MSS set that is able to isolate

When the MSS sets are found, the next step is to analyze their di- fault i from fault j has to include at least one equation that includes
agnosability. The continuation of the example in (6) will be used to fault i. If any such MSS set is found, it has to include an elimination
illustrate how this analysis is done. The 4 MSS sets that can be found of fault j. If not, this MSS would have been discovered earlier.
in (6) are shown in the left column in Figure 1 (a). The matrix in this In the example in Figure 1, the fault matrix shows that f,, and fyh
figure is the incidence matrix of the MSS sets in (6). If any equation can not be isolated from fyf. The problem is that there is no MSS set
in the MSS set i include fault j, the element (i, j) of the incidence that decouple fault fyj.. But there could be one if fyf is eliminated.
matrix is equal to X. Note that an X in position (i, j) is no guar- The fault fJf is moved from the faults F to the unknown variables
antee for fault j to appear in the MSS set i. For an example of the X_. The procedure starts all over from the step (1) in Algorithm 1.
interpretation of an incidence matrix, consider the third MSS set in The result is a new MSS set in which f9 J is decoupled. This gives a
Figure 1 (a). This MSS set could contain f., and fyf, but it is impos- possibility to detect and isolate all faults.
sible that it could contain f,,,, since fJgh is only included in equation
C3 . For simplicity, the derivatives of the faults are omitted in Figure 1.

If the number of different faults is large it is not easy to see which 4.6 Selecting a Subset of MSS Sets
faults that can be isolated from each other. The incidence matrix of
the MSS sets show which faults that could be responsible for an in-
consistency of each MSS set, but it is more interesting to see which It is not unusual that the number of MSS sets found is very large.

faults that can be explained by other faults. Afiault matrix shows the Many of the MSS sets probably use almost as many equations as un-

maximum isolation and detection capability of the diagnosis system. known variables in the entire system. These MSS sets usually rely

The maximum isolation capability with a diagnosis system designed on too many uncertainties to be usable for fault isolation. Small MSS

with this structural method is obtained if it is assumed that each fault sets are more robust and are usually sensitive to fewer faults. There-

makes all MSS sets including this fault inconsistent. If fault j is sen- fore the goal must be to find the set of most robust MSS sets but with

sitive to at least all MSS sets that fault i is sensitive to, then element the same diagnosis capability as the set of all MSS sets.

(i, j) of the fault matrix is equal to X. The interpretation of an X in Start to sort the MSS sets in an ascending order of complexity. The

position (i, j) is that fault fi can not be isolated from fault fh. complexity measure is here the number of equations, even though

The fault matrix corresponding to the incidence matrix in Fig- more informative measures are also a possibility. The MSS sets are

ure 1 (a) is shown in Figure 1 (b). Consider the first row of the fault examined in the rearranged order. If an MSS set increase the diag-

matrix. Suppose that fault f., is present. Then, the first three MSS nosability, then select the MSS set. The diagnosability is increased if

sets are not satisfied in an ideal case. This means that f,, certainly some fault becomes detectable or some fault i can be isolated from

can explain fault fr, but also ff can explain fault f_. Fault f~yl, some other fault j. This means that for each detection of a fault and

cannot explain fault fr, since if fyh is present, the third MSS set is for each isolation between two faults, the smallest MSS sets with this

satisfied. Note that the fault matrix is not symmetric. For example diagnosis ability will be one of the chosen MSS sets. In this way the

fault fvr can explain fault f,, but the opposite is not true. The fault final output from Algorithm 1 will be the most robust set of MSS sets

matrix can more easily be analyzed after Dulmage-Mendelsohn per- with highest possible diagnosis capability.

mutations [8]. This algorithm returns a maximal matching [4] which
is in block upper-triangular form. The diagonal blocks corresponds
to strong Hall components of the adjacency graph of the fault ma- 5 Industrial example: A part of a paper plant
trix. The interpretation is that faults in a diagonal block can never
be distinguished with that diagnosis system. In the small example in This example is a stock preparation and broke treatment system of a
Figure 1 (b), the same matrix is returned after Dulmage-Mendelsohn paper plant located in Australia. The system is used for mixing and
permutations, which usually is not the case. The diagonal blocks are purifying recycled paper for production of new paper. An overview
the l x I diagonal elements. of the system is shown in Figure 2.

Toscreen
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Figure 1. The incidence matrix of MSS sets is shown in (a). The fault Vw.1 - F7
matrix of (a) is shown in (b). I 3 5
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4.5 Decoupling faults

Suppose that the element (i, j) of the fault matrix is equal to X for Figure 2. A stock preparation and broke treatment system of a paper plant.

some i - j. It could still be possible to isolate fault i from fault
j by trying to decouple fault j. Include fault j among the unknown



5.1 System Description 5.3 Simplifying the Model

Most parts of the system are nonlinear and it is only the tank and the In the first step of simplification applied to the left matrix in Figure 3,
pulper that are considered to be dynamic. The model has shown to the equations {27, 28, 29} include variables belonging only to one
compare well to real measured data. Because of space considerations, equation, i.e. they cannot be included in any MSS sets.
the details of the model are omitted, but can be found in [7]. The equaton, i a. t otbe includedtin a ny MSS ts.The second part of the simplification finds that the vari-
system has 4 states: the volume and concentration in the pulper and in ables {9, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31} can be elim-
the tank. There are 6 sensors in the system. Sensor y, and Y3 measure inated. The equations that form groups are {1, 52}, {2, 53},
the water levels of the pulper and the tank respectively, y2 and y4 {3, 54}, {4, 15, 40}, f32, 41, 44}, {39 48, 51}, {31 43, {35, 45},
measure concentration, y5 and y6 measure pressure. The flows and 3, 46, and 15, 4{1, The {mie 48, mo} e is sh} w in
concentrations into this system are known and the flows out from the {37, 46} and {36, 47}. The simplified structural model is shown in
system are also known. There are 6 valves and two pumps that are Figure 4 (a). Note the simplification of the model by comparing Fig-
actuators with known inputs. ure 3 and Figure 4 (a).

There are 21 faults that are considered. All sensors can have a con-
stant offset fault (fi,..., f6). All valves can have a constant offset
in the actuator signal (f,, f12). Clogging can occur in the pipes
near the valves (f13, .fs) and also directly after the tank f19. 10

Finally, the pumps can have a constant offset in the actuator signal

(f2o, f21). -• 1

The system is described by 29 equations. Equations (el,.
e4) describe the dynamics, (e5,...,6 14) are pressure loops, e15
relates the concentration in the junction after the tank with the '25
flows F 4 and F6 , (e16, eC7) describe the two pumps, (18,. e23) 30

are valve equations, (e24, e26) are flow equations, and finally 20

(e27, e29) are sensor equations for sensor 1, 2, and 3. The struc- 35
tural model for these equations can be viewed in the first 29 rows in 21 20itm 11 r 1 15 2r

the matrices in Figure 3.
(a) (b)

5.2 Differentiating the Model
Figure 4. The simplified structural model is shown in (a). The incidence

The highest order of derivatives that is known for all known vari- matrix of the MSS sets is shown in (b)
ables are assumed to be one. If a variable is contained linearly in
an equation the variable disappears in the differentiated expression.
This knowledge is used since the equations are known. Algorithm 2
is applied to the first 29 equations in Figure 3. The result is that all
equations except equation 1, 2, 3, and 4 are differentiated. This re- 5.4 Finding MSS sets
sults in additionally 25 differentiated equations shown in the lower
part of Figure 3. Algorithm 3 is then applied to the simplified model. The algorithm

returns 35770 MSS sets that are contained in the simplified model.
0 0 11 The largest MSS set consists of 24 equations.

10 • ~~10 × × ×

o x x x 105.5 Analyzing Diagnosability
15 15xx

20 20 The two different fault matrices are seen in Figure 5. The Dulmage-2Xx 20 1

S2 -5-Mendelsohn permutations gives that the faults {7, 13}, {8, 14},
x×× 19, 15}, 110, 16},{11, 17} and {12, 18} are never distinguishable.

30 - - - -30 3 These pairs of faults all belong pairwise to the same valve. This iso-
x I× × lation performance for faults concerning valves is in this case ac-

3 35

ceptable. To give an example of how elimination of faults is done,
40 × × 40× the attention is focused on isolating faults 4, 8, and 14.

45 × 45-

50 × 0 5.6 Decoupling faults

55 55
u 5 10 15 20 25 30 0 5 10 15 20

unknown variables faults Considering Figure 5, it is still important to discover if any MSS set

can decouple fault 2 or 3 and be sensitive to fault 4. It is also neces-
sary to decouple fault 20. Apply Algorithm 1 to the original model,

Figure 3. Structural model of the stock preparation and broke treatment but where fault 2 now is considered to be an unknown variable. Then
system. apply the Algorithm 1 to the model where faults 3 is decoupled and

finally also when fault 20 is decoupled. The algorithm finds thereby
additional MSS sets that isolate fault 4, 8, and 14.



5.7 Selecting a subset of MSS sets the consistency relations, which give the fault detection and the fault
isolation capability.

The 24 chosen MSS sets are The method is capable of handling general differential-algebraic

MLSs non-causal equations. Further, the method is not limited to any spe-
2 2 53• cial type of fault model. Algorithm 1 finds all submodels that can3 6 is
4 1122
5 1 16452 be used to derive consistency relations and this is proven in Theo-
(1 223647
7 7916119 rem 2, 3, and 4. The key step in Algorithm 1 is step (3) that finds all

8 8 9 1 724
90 9 101720 MSS sets in the model it is applied to.10 12 17212 th2en6ag
11 16i19324144 Finally the method has been applied to a large nonlinear industrial
12 8 10172024 (7)
13 1214 212326 example, a part of a paper plant. The algorithm successfully manage
14 1417232526 ppr Te~mng
1 5 1724 333442 49todrva seoffthofhi
26 7 1641519324144 to derive a small set of submodets. In spite of the complexity of this
1 7 1721 25 37424650sfiin
1 81 8172101t22021242537424650. process, a sufficient number of submodels could be transformed to
19 172325263942485051
20 3 4 155161724404249 54 consistency relations so that high diagnosis capability was obtained.
2 1 1 3 4 151 724404249 52 54
22 3 4 8 1 0 1516203335 40 4554
23 2 3 4 151617244042 495354
24 3 4 8 9 1516172440 424954 REFERENCES

From these sets and the structural model in Figure 3 the incidence [1] E. Carpanzano and C. Maffezzoni, 'Symbolic manipulation techniques
matrix in Figure 4 (b) is obtained. for model simplification in object-oriented modeling of large scale con-

tinuous systems', Mathematics and Computers in Simulations, (48),
133-150, (1998).

[2] J. P. Cassar and M. Staroswiecki, 'A structural approach for the design
of failure detection and identification systems.', in IFAC Control ofln-
dustrial Systems, (1997).

[3] M-O. Cordier, P. Dague, M. Dumas, F. Ley, J. Montmain,
. M. Staroswiecki, and L. Trav&NMassuy&s, 'Al and automatic control

-'.. •approaches of model-based diagnosis: Links and underlying hypothe-
ses', in 4th IFAC Symosium on Fault Detection Supervision and Safety
for Technical Processes, ed., A.M.Edelmayer, volume 1, pp. 274-279,
(2000).

[4] F. Harary, Graph theory, Addison-Wesley publishing company, ISBN
0-201-41033-8, 1969.

(a) (b) [5] J. De Kleer, A. K. Mackworth, and R. Reiter, 'Characterizing diagnoses
and systems', Artificial Intelligence, (1992).

[6] J. De Kleer and B.C. Williams, 'Diagnosing multiple faults', Artificial
Figure 5. These matrices are the fault matrices befbre (a) and after (b) the Intelligence, (1987).

Dulmage-Mendelsohn permutation. [7] M. Krysander and M. Nyberg, 'Structural analysis fbr fault diagnosis of
DAE systems utilizing graph theory and MSS sets', Technical Report
LiTH-ISY-R-2410, Dept. of Electrical Engineering Link6ping Univer-
sity, (2002). URL:http://www.vehicular.isy.liu.se/Publications/.

[8] G. Meurant, Computer Solution of Large Linear Systems, Elsevier Sci-

5.8 Generating Consistency Relations ence B. V., ISBN 0-444-50169-X, 1999.
[9] C C. Pantelides, 'The consistent initialization of differential-algebraic

Consistency relations corresponding to the 24 MSS sets are calcu- systems', SlAMJ. SCt. STAT COMPUT, 9(2), 213 231, (1988).
lated by using the function Eliminate in Mathemnatica. Most of the [10] B. Pulido and C. Alonso, 'An alternative approach to dependency-recording engines in consistency-based diagnosis', in Lecture Notes
equations in the model are polynomial equations. For polynomial in Artificial Intelligence, volume 1904, pp. 111-121. Artificial Intelli-
equation-systems, the function Eliminate uses Gr6bner Basis tech- gence: Methodology, Systems, and Applications. 9th International Con-
niques for elimination. Each MSS set with 7 or less equations was ference, AIMSA 2000., Springer-Verlag, Berlin, Germany, (2000).
easily eliminated to a consistency relation. The consistency relations [11] R. Reiter, 'A theory of diagnosis from first principles', Artificial Intel-

ligence, (1987).from the MSS set 17 and 18 were obtained from the Eliminate func- [12] L. Trav&-Massuybs, T. Escobet, and R. Milne, 'Model-based diagnos-
tion, but were to complex to be numerically reliable. Elimination of ability and sensor placement. application to a frame 6 gas turbine sub-
the unknown variables in MSS sets with 8 or more equations was system', in DXOI twelfth international workshop on principals of diag-
computational intractable with the Eliminate function. Therefore, by nosis, ed., D. T. Dupre' S. Mcilraith, pp. 205 212, (2001).

using only consistency relations obtained from the 15 first MSS sets,
the isolation capability was reduced slightly. Some further results of
the investigation can be found in [7].

6 Conclusion

This paper has presented a systematic and automatic method for find-
ing a small set of submodels that can be used to derive consistency
relations with highest possible diagnosis capability. The method is
based on graph theoretical reasoning about the structure of the model.
It is assumed that a condition on algebraic independency is fulfilled.

An important idea, towards finding these submodels, is to use the
mathematical concept minimal structurally singular sets. These sets
have in Theorem 1 been shown to characterize these submodels, i.e.


